《位似》相似PPT课件
0
《位似》相似PPT课件1. 在幻灯机放映图片的过程中,这些图片有什么关系?
2. 幻灯机在哪儿呢?
3.我们能给这种有特殊位置的相似图形一个名称吗?
知识与能力
了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。
掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。
过程与方法
经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。
情感态度与价值观
利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。
发展学生的合情推理能力和初步的逻辑推理能力。
... ... ...
教学重难点
位似图形的有关概念、性质与作图。
利用位似将一个图形放大或缩小。
直角坐标系中图形的位似变化与对应点坐标的关系。
不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形(homothetic figures),这个点叫做位似中心,这时的相似比又称为位似比。
位似是一种具有位置关系的相似。
位似图形是相似图形的特殊情形。
位似图形必定是相似图形,而相似图形不一定是位似图形。
两个位似图形的位似中心只有一个。
两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。
... ... ...
位似图形的性质
对应点与位似中心共线。
不经过位似中心的对应边平行。
位似图形上任意一对应点到位似中心的距离之比等于位似比。
位似变换的步骤
①确定位似中心,位似中心的位置可随意选择;
②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;
③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;
④符合要求的图形不唯一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形。
... ... ...
位似多边形
如果两个图形不仅相似,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,则像上的对应点的坐标为(kx,ky)或(-kx,-ky)。
1. 位似图形、位似中心、位似比:
如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。
这个点叫做位似中心。
这时的相似比又称为位似比.
2. 位似图形的性质:
位似图形上的任意一对对应点到位似中心的距离之比等于位似比。
以坐标原点为位似中心的位似变换有以下性质:若原图形上点的坐标为(x,y),与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(Dkx,Dky)。
3. 位似图形的画法:
画出基本图形。
选取位似中心。
根据条件确定对应点,并描出对应点。
顺次连结各对应点,所成的图形就是所求的图形。
... ... ...
1. 判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′
(2)正方形ABCD与正方A′B′C′D′
(3)等边三角形ABC与等边三角形A′B′C′
2. 下面的说法对吗?为什么?
(1)分别在△ABC的边AB,AC上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。
(2)分别在△ABC的边AB,AC的延长线上取点D,E,使DE∥BC,那么△ADE是△ABC放大后的图形。
(3)分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。
... ... ...
《位似图形》PPT课件 观察与思考 下列图形中,每个图中的四边形ABCD和四边形ABCD都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征? 明晰新知 如..
《相似多边形和图形的位似》PPT课件2 1.两个________多边形,如果它们__________________相交于一点,我们就把这两个图形叫做位似图形,这个交点叫做________,这时的相似比又叫做__..
《相似多边形和图形的位似》PPT课件 1.对应角________、对应边________的两个多边形叫做________. 2.两个相似多边形的周长比等于它们的__________;相似多边形面积的比等于它们的_..