《复习》二元一次方程组PPT课件
0
《复习》二元一次方程组PPT课件1.二元一次方程:通过化简后,只有两个未知数,并且所含未知数的项的次数都是1,系数都不是0的整式方程,叫做二元一次方程.
2.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.
3.二元一次方程组:由两个一次方程组成,共有两个未知数的方程组,叫做二元一次方程组.
4.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.
5.方程组的解法:基本思想或思路——消元
常用方法————代入法和加减法
根据方程未知数的系数特征确定用哪一种解法.
... ... ...
用代入法解二元一次方程组的步骤:
(1).求表达式:从方程组中选一个系数比较简单的方程,将此方程中的一个未知数,如y,用含x的代数式表示;
(2).把这个含x的代数式代入另一个方程中,消去y,得到一个关于x的一元一次方程;
(3).解一元一次方程,求出x的值;
(4).再把求出的x的值 代入变形后的方程,求出y的值.
用加减法解二元一次方程组的步骤:
(1).利用等式性质把一个或两个方程的两边都乘以适当的数,变换两个方程的某一个未知数的系数,使其绝对值相等;
(2).把变换系数后的两个方程的两边分别相加或相减,消去一个未知数,得一元一次方程;
(3).解这个一元一次方程,求得一个未知数的值;
(4).把所求的这个未知的值代入方程组中较为简便的一个方程,求出另一个未知数,从而得到方程的解 .
... ... ...
行程问题:
1.相遇问题:甲的路程+乙的路程=总的路程
(环形跑道):甲的路程+乙的路程=一圈长
2.追及问题:快者的路程-慢者的路程=原来相距路程
(环形跑道): 快者的路程-慢者的路程=一圈长
3.顺逆问题:顺速=静速+水(风)速
逆速=静速-水(风)速
1.某学校现有甲种材料35K,乙种材料29K,制作A.B两种型号的工艺品,用料情况如下表:
(1)利用这些材料能制作A.B两种工艺品各多少件?
(2)若每公斤甲.乙种材料分别为8元和10元,问制作A.B两种型号的工艺品各需材料多少钱?
总量不变问题
1.入世后,国内各汽车企业展开价格大战,汽车价格大幅下降,有些型号的汽车供不应求。某汽车生产厂接受了一份订单,要在规定的日期内生产一批汽车,如果每天生产35辆,则差10辆完成任务,如果每天生产40辆,则可提前半天完成任务,问订单要多少辆汽车,规定日期是多少天?
销售问题:
标价×折扣=售价
售价-进价=利润
利润率=利润/进价=售价-进价/进价
例:某车间每天能生产甲种零件120个,或者乙种零件100个,或者丙种零件200个,甲,乙,丙3种零件分别取3个,2个,1个,才能配一套,要在30天内生产最多的成套产品,问甲,乙,丙3种零件各应生产多少天?
... ... ...
二元一次方程与一次函数专题训练:
1.已知函数 y=2x-1与y=3x+2 的图象交于点P,则点P的坐标为( ).
(A)(-7,-3) (B)(3,-7) (C)(-3,-7) (D)(-3,7)
2.已知直线y=-1/2x+b 与y=x 直线相交于P点,则P的值分别为( ).
(A) 2,3 (B) 3,2 (C)-1/2,2 (D) -1/2,3
... ... ...
《二元一次方程组的应用》PPT课件 第一部分内容:行程问题 基本数量关系 路程=时间速度 时间=路程/速度 速度=路程/时间 同时相向而行 路程=时间速度之和 同时同向而行 路程=时间速度..
《二元一次方程组的应用》PPT 第一部分内容:温故知新 列一元一次方程解应用题的基本步骤。 列方程解应用题的关键在哪? 找一找等量关系 两马驮物的问题,这是在古印度广为流传的一个..
《二元一次方程组的解法》PPT下载 第一部分内容:温故知新 二元一次方程组的解题思路是什么? 什么是代入消元法? 代入消元法的解题步骤是怎样的? 观察下列二元一次方程组的,找特点..